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industry, the transition from frozen to live markets
for GBR reef fish might be seen as positive devel-
opment in both economic and ecological terms. On
the other hand, the increased prices paid for live
fish are likely to have provided at least part of the
incentive for real increases in effort seen in the fish-
ery since 1994. Any potential benefits of the live
fish industry, such as reduced catch rates, espe-
cially of by-product species, that can be sustained
by individual fishers due to value adding on the
live product, may be offset by overall increases in
effort. Prudent management action is advisable,
therefore, to control effort adequately and avoid
real or perceived stock depletions, either locally in
areas close to ports and population centres or more
widely, and economic hardship in the fishery. 
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Abstract

This study provides an economic valuation of the demersal fishery spawning aggregation function in
Komodo National Park. A parametric generalised single-period model is developed to assist in modeling
and estimating the value of the fishery linkages. For a linear function, the maximum value of the spawn-
ing aggregation function is calculated to be USD 629,000 annually at 100% protection of the spawning sites.
This is of a similar order of magnitude to the direct recreational values associated with the park. 

Established in 1980, it is listed as a World Heritage
Site and a Man and the Biosphere Reserve. Located
between Sumbawa and Flores Islands in eastern
Indonesia, the park consists of three main islands,
Komodo, Rinca, and Padar and several smaller
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Introduction

Komodo National Park (KNP) is widely recognised
as an exceptional storehouse of both terrestrial and
marine biodiversity with global significance.
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islands. The park contains most of the habitat of the
world’s largest reptile, the Komodo monitor. While
originally established to protect the Komodo drag-
ons, it is now highly valued as a marine reserve as
well. About 76 per cent of the area of the park is
water; it is considered one of the richest areas for
coral species in Indonesia and contains one of the
most diverse collections of fishes in the world.

The goal of park authorities is to conserve and sus-
tainably use the biodiversity assets of KNP through
establishing a set of mechanisms and systems to
help ensure effective long-term park management.
International funding support is directed towards
implementing a 25-year master plan completed by
the government of Indonesia with the assistance of
The Nature Conservancy (TNC et al. 2000).

In support of the planning efforts at KNP, a series
of economic analyses was conducted. Their scope
included economic policy reviews, economic feasi-
bility studies for alternative livelihood develop-
ment in the park area, and a cost–benefit analysis
(CBA) of the conservation initiative. The CBA was
intended to look at the overall efficiency of the con-
servation expenditures, given the likely income
from enhanced tourist revenues from diving and
dragon watching. In addition, the CBA looked at a
number of hitherto neglected benefits of conserva-
tion through estimating their potential economic
contribution in monetised terms. Valuation of a
spawning aggregation function was one of these
additional benefits. Its inclusion within the analy-
sis performs an important awareness-building role
to the extent that the monetised value can be
directly compared to the direct benefit measures
associated with tourism.

As readers of this Bulletin are well aware, the
potential value of spawning aggregation sites is
becoming well acknowledged in the scientific liter-
ature (Pet et al. 2001; Pet-Soede et al. 2000; Russell
2001; Sadovy and Eklund 1999; Johannes 1997;
Turnbull and Samoilys 1997; Vincent and Sadovy
1997). Within the context of marine protected areas,
such sites can also serve an important basis for
delineating the protected area system, implement-
ing seasonal closures or instituting similar regula-
tory measure (Nowlis and Roberts 1999; Roberts
1997, 1998a, 2000). But many policy-makers are
unconvinced or unaware of the benefits of protec-
tive measures, and the traditional economic analy-
ses of marine protected areas (MPAs) management
typically focus on tradeoffs between conservation
benefits and fishery catch (see Cartier and
Ruitenbeek 1999 for review). More recently, eco-
nomic analyses have started addressing so-called
‘spill-over benefits’ from MPAs, whereby MPAs are
seen to provide an important function through

allowing fishery stocks to recover within no-take
zones (Roberts 1998b; Rodwell et al. 2000). In such
areas, economic efficiency may be improved
through (i) higher yields; (ii) lower fishing effort
and cost to realise these yields; or (iii) lower regu-
latory costs because of easier monitoring of the
fishing fleet. But the role and value of spawning
aggregations in such spill-over analyses is not
addressed.

In the case of KNP, ongoing monitoring studies
have revealed the importance and the complexity
of spawning aggregation sites within the park
boundaries (Pet 1999; Pet et al. 1999; Pet and
Muljadi 2001). Upon the advice and request of
TNC, economic analyses were conducted to draw
attention to the potential economic significance of
this function. The purpose of this article is to pre-
sent the simplified model and estimates for KNP.

Model

At this time, little is known about the complex
dynamics of spawning aggregations in Komodo.
Moreover, no economic analyses of the value of
this function have been conducted elsewhere;
hence no formal methodology has been developed
for treating this potentially important value. To
address the issue, a generalised model was devel-
oped that could be used in any setting. The model
requires some considerable simplification of the
relationships, yet it provides enough scope and
flexibility to permit value estimates to be generated
that are of similar reliability to those associated
with other costs and benefits (e.g. recreation bene-
fits) typically incorporated into a CBA at the feasi-
bility analysis stage.

A simple single-period model is used that reflects a
parametric density function for the demersal fish-
ery in the park area. The model has a general form
as follows:

x = Presumed area of spawning aggregation sites
X = Presumed influence area
P = Total protected area (no-take zone) (P≤X)
a = Degree of protection given to spawning area
(0% ≤ a ≤ 100%)
Do = Fishery density in absence of disturbances
D = D(ax,b) = Generalised fishery density, 
such that D = abDo
H(a,b,X,P) = D * (X – P) = Harvest value

The annual value of the spawning function is taken
as the difference between H(a=0,b) and H(a=1,b)
for any particular site. This general model is very
flexible as it can accommodate all extremes of the
usual management assumptions. At one extreme
we have the typical assumption that spawning
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aggregation is not important (b=0) and that the
density function is thus not a function of protection
efforts. In such a scenario, protecting some area
simply reduces fishery harvest because of the no-
take zone. We can also specify a linear dependence
(b=1) between spawning aggregation site protec-
tion and density; at b=1, a 50% protection would
place the density throughout the region at 50% of
D; even so, harvest value would be less than 50% of
the total fishery because of the influence of the no
take zone. One can also model non-linear effects
(b>1) to demonstrate strong linkages between
spawning aggregation site and regional density. In
general, the value of the spawning aggregation
function will depend on the ratio of the no-take
area to the influence area (P/X), the ratio of the
spawning area to the no-take area (x/P), the pro-
tection level of the spawning area (a), and the link-
age parameter (b).

Data and assumptions for KNP

Information for KNP was derived from the man-
agement plan (TNC et al. 2000) and from official
government fishery statistics for the demersal
fisheries in the region (BPS 2000; Dinas Perikanan
Kabupaten Bima 2000). We caution that one of the
most important values of this function is the
Benchmark Density (Do), which is based on sec-
ondary sources through local Fishery
Department landing data — these data in
Indonesia are known for their unreliability and
the final result must therefore be regarded as an
order-of-magnitude estimate.

In the case of Komodo Park, we place a maximum
value on the spawning aggregation function based
on the following assumptions:

• Total area of influence X = 3,142,000 ha
(~100 km radius; excludes land)

• Total area of spawning aggregation sites 
x = 1700 ha (reef area in KNP)

• Total protected area (no-take zone) = 132,000 ha
(area of KNP Marine component)

• Benchmark density (Do)= USD 0.209 . ha-1

(based on local demersal fishery statistics)

Results and discussion

For a linear function (b=1) the maximum benefit
value of the spawning aggregation function is cal-
culated to be USD 629,000 annually at 100% pro-
tection of the spawning sites. In a traditional eco-
nomic analysis that excluded this function (i.e.
b=0), the impact of the MPA would be to impose a
cost to the fishery sector of USD 27,600 (corre-
sponding to the lost value of the fishery density
within the no-take zone of 132,000 ha).

The benefit value is considerable in relation to
other benefits associated with the park. In present
value terms (using a 10% discount rate) the benefit
corresponds to USD 6.3 million. To place these fig-
ures in perspective, TNC estimates annual operat-
ing costs for KNP to be of the order of USD 1.5 mil-
lion to USD 2.0 million. The park currently gener-
ates about USD 60,000 annually in direct gate rev-
enues from diving and dragon-watching tourists,
although this ‘recreation benefit’ will likely
increase substantially as the number of visitors
increase and as gate fees are increased to match
those in marine parks elsewhere in the region. 

The implications of these results for management
authorities are significant. First, they provide an
economic rationale for aggressively protecting
known and potential spawning aggregation sites.
Second, at KNP, the value of such aggregation sites
is equal in economic significance to the recreational
value of the park as a whole. Finally, overall pro-
tection efforts are consistent with protecting a
regional demersal fishery on which many house-
holds living outside of the park depend.
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